OPERATING SYSTEM DESIGN WITH
COMPUTER NETWORK COMMUNICATION PROTOCOLS

Wilfried G. PROBST
Dept. of Computer Science,
Concordia University

Gregor V. BOCHMANN
Dép. d'informatique et de recherche opérationnelle,
Université de Montréal,

Montréal, Québec, Canada.

In view of the size and complexity of modern
operating systems, this paper proposes their subdivi-
sion into a set of smaller functional modules and the
implementation of a number of their functions on sepa-
rate hardware processors. The information transfer
requirements resulting from physically separated system
components are examined and the adaptation of a stan-
dard end-to-end protocol is suggested for an efficient
solution to the interprocess communication problems.

1. INTRODUCTION

The last 25 years have witnessed rapid progress

in electronics and computer hardware, with drastic im-
provements in the areas of computational speed, infor-
mation storage volume and input-output (I/0) capabili-
ties. Efficient utilization of these hardware re-
sources would not have been possible, however, without
a corresponding development of software facilities,
designed to allow shared user access to a computer
complex and optimized throughput of their jobs.

Section 2 of this paper briefly covers the evolu-
tion of these system facilities and describes the basic
structure and components most commonly encountered in
modern operating systems (0S). It shows not only their
continuous expansion in capacity and flexibility, but
also their growth in complexity and size which has led
to increasingly large requirements of processor time
and memory space. While this overhead may still be
within acceptable limits on large scale computers, it
becomes really serious on small mini-computers which
are enjoying a widespread popularity nowadays due to
their low cost/performance ratios.

Section 3 analyses various possible hardware and
software solutions to this problem. It then proposes
an approach which consists of dividing the normally
main memory resident part along functional lines into
a set of modules implementing a certain number of them
on separate micro-processors and thus obtaining an 0S
where the basic software is distributed over distinct
hardware units. In particular a major portion of all
1/0 processing routines are removed from the central
processor (CP) and the resulting system becomes not
only smaller and less complex, but it is also capable
of an even higher degree of concurrency in most com-
puter operations than a normal central memory resident
one., The various advantages as well as the additional
requirements of such an approach are discussed. While
it will decrease the overhead in the central unit and
improve the flexibility of information flow through
the system, it also requires proper links between
physically separated system components.

Section 4 deals with this aspect and indicates
how general techniques developed for computer networks
can be used for an efficient solution of the commumica-
tion problems within a distributed 0S. More specifi-
cally it is shown how protocols designed for virtual

terminal connection and dialogue are quite suitable
for adaptation to the requirements of properly con-
trolled information flow within the system.

Finally, in order to illustrate all these con-
cepts, it is shown how a relatively powerful 0S could
be implemented on a low-cost mini-computer system,
using a number of micro-processors to handle most
tasks associated with I/0 operations, including file
access, data transfer and peripheral device control.
Possible connection of this system to a public data
network is also discussed.

2. OPERATING SYSTEMS BACKGROUND

The basic purpose of any 0S is to allow a group
of people to share the use of a complex computer
installation in an efficient manner, in order to maxi-
mize the throughput of their jobs™. Considering the
capabilities as well as the cost of modern hardware,
we are faced with the non-trivial task of operating
the computer in such a way as to ensure optimal use
of all its components and thus hopefully achieving
the above-mentioned goal.

2.1 Historical Evolution

The limited capabilities and low speed of the
first hardware generation did not permit much sharing
of resources in the early days of computing. The
entire computer installation was usually allocated to
one user at a time, most operating procedures were
done manually and 0S software was practically
non-existant.

The introduction of a number of improvements and
new developments since the late 1950's increased com-
puting power and speed by several orders of magnitude,
but hardware complexity also reached a point where the
skills of an average user were no longer sufficient to
handle its operation efficiently. To mention only a
few examples, computers were equipped with increa-
singly numerous and complex peripherals and I/0 opera-
tions were performed by means of autonomous direct
memory access channels (DMAC), capable of operating
in parallel with the CP. Sophisticated interrupt
systems enabled automatic detection of special condi-
tions as well as synchronization between concurrent
processes and, together with appropriate memory pro-
tection mechanisms, provided the necessary infra-
structure for elaborate multiprogramming and time-
sharing of hardware resources.

Standard software facilities were therefore intro-
duced to provide the basic services required for the
complicated task of operating the different units of
a modern computer. For example, input/output control
systems provided the necessary 1/0 functions and super-
visors (monitors) handled interrupt processing, re-
source allocation and job scheduling. This software

4-19

constitutes the basis of any modern OS and the user
communicates with it by means of an appropriate com-
mand language.

2.2 Basic Structure and Main Components:

In order to perform the various tasks outlined in
the previous paragraphs, the classical single-processor
0S has become a very large software system with a com-
plex structure, incorporating many different compo-
nents. Those performing supervisory functions which
are called upon most frequently and whose prompt execu-
tion is essential (e.g. interrupt processing), form a
nucleus that must reside in central memory (CM) at all
times. Other less critical ones are normally placed on
secondary storage to reduce CM overhead and are loaded
only when required, overlaying routines which are no
longer needed at that moment. The trade-off of this
scheme, however, is an increase of CP time overhead,
caused by those swapping operations.

The main parts of a typical OS can be briefly
defined as follows®, where we have emphasized the
specific functions of those components which are more
closely related to the following sections of this
paper.

A, Executive Control Functions

This part is responsible for maintaining real-time
execution control of the system environment, in parti-
cular: :

(i) Job scheduling, resource allocation and event
monitoring.

(ii) 1I/0 control, including I/0 scheduling, data
transfer and device manipulation.

(iii) System communication, including operator console

support and I/0 queue maintenance (spooling).

(iv) Hardware error detection and recovery, program
error control (overflows, etc.).

(v) Support for timing and debugging services.
(vi) Accounting procedures.

B. System Management Functions

This part contains the non real-time components
of the 0S, supporting both system and application
programs by providing services such as 0S management
(e.g. system generation), program maintenance (incl.
libraries and catalogues), compiler interfaces and
support utilities.

C. Data Manipulation Functions

This third part of the OS allows the user to
access and process data in general. To mention just a
few examples, we usually find:

(i) File management facilities, including directo-
ries and user access control,

(ii) 1I/0 support facilities for different data
access modes (e.g. sequential) and record
blocking.

File display and copy facilities.

(iv) Peripheral device support, including format
conversion and data editing.

4-20

While there are several smaller yet successful
special-purpose systems (e.g. dedicated to interactive
timesharing), the approach most often taken by major
computer manufacturers has been to build a single,
large general-purpose system which offers a wide
variety of services. Typical examples, such as
0S/360 (IBM), have indeed become very large, specially
if compilers and utilities are also included. The
overhead created by these contemporary OS threatens
to defeat the very purpose for which they were origi-
nally developed, namely a more efficient use of the
hardware.

Firstly, it is not uncommon to see resident 0S
routines occupy more than 25% of the main memory,
thus decreasing the amount available to users; on
small systems this percentage can be even larger.
Secondly, because of the numerous supervisory func-
tions they have to perform, a substantial portion of
total execution time is spent by those routines doing
administrative work, while user tasks wait for the CP
to become available. Finally, no matter how carefully
programmed, they will inevitably be error-prone in
view of their size alone.

A number of changes and innovations in hardware
as well as OS structure and design have therefore been
suggested, with the objective of improving overall
performance by solving some of the problems outlined
above. On the software side we have most notably the
development of synchronization primitives at low
levels (e.g. semaphores) as well as higher ones
(e.g. mailboxes and monitors‘). A number of program-
ming techniques and tools are also being introduced,
for example modular design, structured programming
and even special languages suited for structured 0S
design (e.g., Concurrent PASCAL3).

In the next section we will briefly mention some
other proposals involving different hardware utiliza-
tion as well. We will then present a solution in
which modular design techniques are carried over to
the hardware implementation by assigning individual
processors to different modules. This approach,
particularly attractive in the case of smaller
low-cost configurations, should prove to be generally
useful in a wide range of applications such as systems
with remote job entry or computers and terminals con-~
nected through public networks.

3. DISTRIBUTED OPERATING SYSTEMS

In order to support general-purpose systems,
large and expensive computer mainframes were practi-
cally mandatory until recently. The increasing use
of medium and large-scale integration techniques in
electronic circuits has led not only to rapidly
decreasing hardware costs, but also to the develop-
ment of relatively inexpensive yet powerful mini-
computers (minis for short) in the late 1960's.
However, due to their limited memory size and usually
less elaborate I/0 and interrupt facilities, they
often operate under control of a greatly simplified
0S capable of just a few specific tasks (e.g. data
acquisition, simple time-sharing or sequential batch
only). Their growing popularity has therefore stimu-
lated work in computer architecture as well as in 0S
design, with the objective of implementing more
powerful and flexible software systems on mini-compu-
ter based hardware configurations.

3.1 Multiprocessing principles

One obvious solution to overcome the restric-
tions imposed by limited hardware capabilities con-
sists of connecting several minis together and forming

a multi-processor complex. Current efforts in this
area seem to be following two main directions, namely:

(i) Integration of several processors into one pro-
cessing system, equivalent in computing power
to much larger conventional machings; the PRIME pro-
ject4 and the C.mmp (HYDRA) system” are typical exam-
ples of this approach.

(ii) Connection of independant and not necessarily

identical processing systems to share hardware
and softw?re resources; the DCS system, the MININET
prototype’ and the KOCOS complex8 jllustrate this
direction.

A brief analysis of any 0S, revealing the set of
basic functions outlined in the previous section,
would obviously suggest its decomposition into a
group of modules, each with a specific purpose. Fur-
thermore, it can also be seen that many of the tasks
performed by these modules are quite independent of
each other and could be performed concurrently. On a
single processor true parallelism is of course impos-
sible; instead the processor switches from one task
to the other by means of intricate interrupt proce-
dures, thus reducing delays to acceptable levels.

This modular OS design concept suggests therefore
yet another way to increase the power of any system:
reduce the CP overhead by freeing it of a number of
tasks which do not require its considerable computing
power and have them processgd by separate hardware
units, The CDC-6000 series” represents an early
example of this design philosophy; certain functions
(mostly I/0) are implemented on so-called '"peripheral
processors' each of which has a separate memory,
enabling them to execute programs independently of the
CP and each other. A common CM is used for communica-
tion and information exchange between all processors.

Recent hardware and software developments have
enabled us to consider a more flexible and generalized
extension of modular OS design into hardware archi-
tecture. In view of the rapid development of truly
low-cost micro-processors (micros for short) since
1971, the practical implementation of a larger number
of functional units on dedicated, autonomous pro-
cessors is becoming economically feasible nowadays;
the computational power required can be provided by
one or more minis,

In such a distributed OS only those modules whose
function and operational environment require the use
of a CP, would remain in the central unit. Device
controlling and I/0 handling routines are the most
obvious candidates for redistribution. There is
indeed no valid reason requiring the CP to keep track
of a variety of device-dependant details (e.g. speci-
fic channel commands and status bits) each time a
program is simply requesting the transfer of a block
of data between its buffer and a designated peripheral
unit., Other routines which could quite logically be
implemented outside the central unit, include major
portions of the file management system (disc and tape
controllers) and some parts of the job control func-
tions, e.g. spooling and file transfers between
devices without need for CP intervention.

Fig. 1 shows a hardware configuration, consisting
of a TI-980B mini-computer system equipped with the
peripherals usually needed for a meaningful system,
on which experimental design work of distributed soft-
ware is being carried out at present. The OS proposed
for this configuration will be essentially file-
oriented, similar in concept to those used in the
above-mentioned CDC-6000 series (cf. SCOPE or

Processor
CP/CM
DMAC
Devices Micros
i RES. |, IResource
Op.Cons | oc ALLOC. Requests

Card | | (g 308 les| Job

Reader

i

SCHED. Queues*
Line
Printed Lp DP Disc
Pack

Mag. MT L]
Tape — -

Vi

1

(I}

Common Extensions:
Bus

Other devices,
Connection to
public network,
etc.

Fig. 1 * On DP or own floppy disc.
Nos1®). As illustrated in Fig. 2, these files will be
used in normal operation as input and/or output by
several entities such as user tasks, utility routines,
etc., called processes for short. The individual com-
ponents of this system and the assignment of various
functions to a number of micros are described in
greater detail in the next section.

|————>| Process

N=0,1, 2 ...

Fig. 2

3.2 Micro-Processor Functions

Each micro will handle the physical I/0 opera-
tions for a particular device or type of device, taking
care of the tasks normally performed by the device
service routines in the OS supervisor. It will send a
block of information from an internal buffer to a
common bus (or to a network) in case of a system input
and receive a block from the bus in case of output.
Depending on the type of device it controls, the micro
may also perform a number of addditional functions
such as:

(i) Cardreader: Control card interpretation (to
determine destination of input files); charac-
ter code conversion.

(ii) Lineprinter: Code conversion; vertical and
horizontal format control.

Job scheduler: Job input and output queue
maintenance (batch jobs); control card inter-
pretation (to identify user tasks); task
scheduling and initialization.

(iv) Resource allocator: Process request queue
maintenance; resource allocation; prevention
of deadlocks.

(v) Magnetic tape: Label processing;
blocking/deblocking of data records; tape posi-
tioning (e.g. rewind); handling of multiple
files per reel.

(vi} Disc: On-line file management (incl. file
directories); access control; file positioning
(e.g. seek); blocking/deblocking; disc space
allocation.

A typical device-micro implementation of these
functions contains the basic components shown in Fig. 3
and requires each of them to be provided with a cor-
responding amount of private memory. The procedural
and constant parts should be in read-only memory (ROM)
for added protection.

As indicated above (see also Fig. 1}, all micros
are able to communicate directly with each other.
This raises a number of problems the solution of which
necessarily influenced the design of this system; we
had to consider in particular the following:

- Proper routing of information over the common
bus; this difficulty is overcome by means of
proper bus design and the adoption of appropri-
ate message formats and transmission protocols,

- Proper assignment of files to individual pro-
cesses; the resource allocation micro controls
the use of all peripheral system components in
order to avoid conflicts and deadlock problems.

RAM* ROM
I1/0 Buffers] Micro Programs,
Variables Constants
Device,

Common Bus

Fig. 3

* Random Access Memory

3.3 Benefits and Drawbacks

Let us now examine some of the potential advan-
tages offered by a system designed and implemented
along these lines.

A. Reduced CP overhead

The part of the OS which still resides in the cen-
tral unit requires a smaller amownt of CM space and
less frequent use of the CP, since it has fewer func-
tions to perform than in a conventional system. This
is particularly important in the case of a mini-
computer configuration.

B. Flexible Information Flow

The flow of information through the system becomes
far more flexible and efficient. In contrast to a
traditional system where all I/0 transfers involve the
CM, it is now feasible to exchange data directly bet-
ween any two peripheral units, e.g. card-to-disc or
tape-to-printer transfers. A control card specifying
source and destination files enables the 0S to set up
a direct transfer between the two corresponding
micros. A batch job can be identified by a special
JOB card recognized by the Cardreader which then sends
it directly to the Scheduler and its job input queue.
This design property therefore permits the implementa-
tion of a truly concurrent spooling system, elimina-
ting unnecessary buffers and requiring only one pas-
sage through CM instead of the usual three for each
job. Fig. 4 shows the normal path of a batch job
through such a system and indicates several other pos-
sible data paths.

CP/CM
3
Input 2 JOB | 4 | Output
Queue SCHED, Queue
1 5
l |) CR . > LP
e
VL S
Ml Jem e — =~ »| DP

Information flow:

— JOB command (spooling)

Fig. 4 - ---» COPY command (file transfer)

C. Increased Protection

One of the threats affecting standard OS reliabi-
lity is the possibility of accidental erasure of sys-
tem components, tables or variables due to programming
or design errors. Physical separation of modules and
their implementation on different hardware processors
will provide better protection against such flows and
the use of ROM within the micros provides even further
safeguards, as stated before. As far as privacy is
concerned, additional security may be provided for

both transfer and storage of information, by including
enciphering and deciphering mechanisms in the micros
and allowing the user to specify his own secret
encryption keyll; the Cardreader might for example
scramble all characters according to a key provided
by the owner of the information, before it is sent
further. Data thus stored could then only be re-
trieved and correctly interpreted if the key is also
supplied.

D. Manufacturer-independeént Device Selection

This system also makes it easier to connect peri-
pheral units from different manufacturers to a given
computer. Once a micro has been programmed to handle
the particular device, the actual interfacing problems
are greatly reduced as long as information transfers
between system components are governed by a standard
communication protocol. There would be no more need
for introducing new device service routines into the
CM resident portion of the 0S and interfacing them
with existing ones. Obviously, whenever a device is
replaced by a different one, the micro in question
must be reprogrammed.

Finally, let us now consider the two main disad-
vantages of such a distributed operating system.

E. Additional Hardware Requirements

When compared to a standard system, the principal
hardware addition consists of the various micros and
their memories. But with steadily decreasing hardware
costs the above-mentioned benefits should be worth
their price, which is even partially offset by a
reduction in the amount of CM needed.

F. Communication Problems

As stated before, proper communication between
distributed system components raises a number of pro-
blems not encountered in standard 0S, where most inter-
process exchanges are simply achieved either by means
of shared variables in the CM or by passing address
parameters (pointers) and where a subroutine call can
be performed by a single CP instruction. In the next
section we will look at these difficulties in greater
detail and propose a solution inspired by similar
problems occurring in computer network communication.

4. COMMUNICATION BETWEEN SYSTEM COMPONENTS

In the previous section we have discussed a few
characteristics of a distributed 0S; we shall now pre-
sent the basic principles involved in its operation.
Let us begin by looking at the file concept in greater
detail.

There are two basic types of files, each with its
own internal subdivisions, as follows:

(a) Text files, containing character information such
as source programs and input data. The informa-
tion in a text file is logically subdivided into:

- Pages, defined as a (variable sized) sequence
of lines,

- Lines, defined as a variable sequence of
characters.

A user job file, for example, could have the fol-
lowing traditional structure, where control cards are
identified by a special character (e.g. !) .

! JOB user and job information (line 1)

! CoPY file-1 To file-2 (line 2)

! FORTRAN (etc.)
Source program

! EXECUTE

! EOF (end of file)
L]

(b) Binary files, containing bit strings or binary
words in a machine-dependent format; they are
normally produced by certain processes such as
compilers and assemblers, i.e., object programs,
or they may be created from the output of a user
program. They are logically subdivided into
binary records of variable length.

Both types of files may be accessed in basically
two different ways, defined as follows:

(i) Sequential access. When the file is first built,
its subdivisions (pages or records) are placed one
after the other and may later be accessed only in
the same sequence in which they were initially
created, i.e., in order to get to record n of a
binary file one must have accessed records
1,2,...,n-1 previously.

(ii) Direct access. Each subdivision is directly ad-
dressable and may be accessed independently from
the others. This can be achieved, for example,
by giving each record a number (relative to the
first one) or a unique key which can be mapped
into its address by using some kind of index
table.

There may be some device dependant restrictions
imposed on files, however; for example, files for
printed output should not be binary (although octal
or hexadecimal dumps might be of interest to some) and
direct access files can only be implemented on certain
types of storage devices.

The design of our distributed system allows some
processes to share a single processor (multiprogram-
ming), while others are implemented on separate fully
dedicated ones. The most important problem to be
solved, therefore, is to ensure correct and efficient
communication between 0OS components, i.e. file access
and transfer between micros in our case. In the next
sections we will show how computer network communica-
tion protocols can advantageously be used for this

purpose.

4.1 End-to-end Communication

Standard end-to-end protocols, implemented on top
of the packet switching service in computer networks,
have been proposed in order to provide users with a
feneralized interprocess communication facility »13

4 They are based on the notion of collections of
communicating processes, each such collection sharing
a set of common resources and thus constituting a
so-called '"Virtual Host" (VH) which appears as a
single entity to the packet switching network. Each
of those processes is associated with a unique "port"
number for communication purposes and all the ports
in a VH are grouped together forming a "Transport
Station'" (TS) which provides port-to-port communica-
tion through the network. The introduction of the
port concept as a network name space thus reduces the
host-to-host protocol to a multiplexing of port-to-
port, i.e. end-to-end protocols.

File Port Port Proc.

2 (:)

Destin. VH

* Well-known port

Fig. § (File management)

An analysis of the commmications in the distri-
buted 0S5 described in the previous section reveals
many similarities with computer network information
flow. We may indeed consider the resources associa-
ted with each of the processors (CP and micros) to
constitute a VH, and the common bus connecting them
to form a simple network on which packets of informa-
tion are sent from source hosts to destination hosts.
Similarly, since each of those processors may contain
one or more processes accessing different files, each
corresponding VH will therefore require a TS, con-
taining one port per active process or open file, in
order to multiplex their access to the bus. This way,
as an example, the reading of a file A by a process
P can be accurately equated to an end-to-end trans-
fer between two ports, as indicated in Fig. 5.

The packet switching facility carries informa-
tion from a source TS to a destination TS, both of
which are identified within the packet header by their
addresses. Furthermore, since a TS is seen as a col-
lection of ports from the communications side, speci-
fic port numbers will also have to be carried;
together with certain other pieces of information
(e.g. function codes) they would form the transport
header which precedes the actual packet textl4, Port
numbers are locally associated with corresponding pro-
cess or file names and while certain of these associa-
tions may be static (for some '"well-known'" system
ports), most will have to be mapped dynamically by
means of appropriate tables containing the names of
currently active processes and open files. Although
such mapping operations in the TS may seem unnecessa-

rily complicated, they reduce substantially the amount
of information required in the transport header (e.g.
file user and owner names, etc.) and therefore simpli-
fy information transfer; the assignment of the port
numbers during the establishment of an end-to-end
communication link will be discussed in the next
section (cf. SWITCH funtion).

The end-to-end protocol provides for transfer of
letters between ports within the context of their asso-
ciation. Their size must be such that any physical
record in the system can be placed in a letter, to
avoid fragmentation of data seen by the process as
belonging logically together. If the letter exceeds
the packet size, it will be divided into fragments by
the sending TS and reassembled upon arrival by the
destination TS, to be delivered as a whole the way it
was sent. The protocol ensures proper reassembly by
means of letter reference and fragment numbers and
should also include error and flow control at the
letter level for a reliable operation of the 0S. Very
short letters, or telegrams, may be used in special
cases to signal some unusual event or an interrupt
(e.g. status checks, stop sending, etc.). While net-
work protocols were designed for an environment where
time delays and loss rates are much larger than in our

4-24

bus-coupled multiprocessor environment, we feel that
the overhead they represent may be reduced to an ac-
ceptable level (by some minor simplifications, if
necessary) and should add substantially to the overall
reliability of our 0S. Further implementation details
may be found in the afore-mentioned references13,14

4.2 File Access and Data Transfer

Connecting a user process to a file provides
access to the information that the latter contains.
Depending on its internal structure and the device on
which it resides, this connection may however take
different forms. We will therefore introduce the
concept of Virtual File Access Protocol to define a
standard file access method within the 0S. This pro-
tocol should make all files look alike to the acces-
sing processes, no matter where they reside. In most
computer networks, whether existing or proposed, the
basic transport services are enhanced by introducing
additional facilities into the host-to-host protocol,
such as thosezprovided by the TELNET subsystem in the
ARPA networklZ, This concept ii a}go illutrated by
the "Virtual Termixig,l Protocol5:16 and the "Bulk
Transfer Function"'’, proposed to make a variety of
terminals and file structures from different manu-
facturers look logically identical in the way they
interact with the network. In view of the environ-
mental similarities, these ideas can easily be adapted
to our distributed 0S. Just as the above-mentioned
terminals or files require some form of intelligence
to take care of their local handling, each individual
peripheral unit in the distributed OS is handled by a
micro-processor, programmed to transfer information
according to the common file access protocol which
has to provide the following functions:

A. Connection Control, containing a set of initiali-
zation directives for establishing connections between
process and file entities, and for allowing such a
connection to be changed; this liaison is established
by exchanging identification, file characteristics and
process requirement messages1 and corresponds basi-
cally to an OPEN function.

In case of single file devices, e.g. card reader
and line printer, there will only be one port in the
VH and process-file linking is straight-forward.
Multi-port hosts, such as disc and tape controllers
handling several files concurrently, require a more
elaborate connection procedure for efficient and flex-
ible port assignment. The process P establishes
initial contact with a well-known system port within
the VH, which acts as a common entry point to the
file management system, and sends his requirements,
e.g. name of file and owner, access mode (read/write),
etc. The VH uses a file catalogue to find it, veri-
fies the legitimacy of the request (file protection)
and then assigns a new port number to the file (see
Fig. 5) by performing a SWITCH function such as the
one described inl3, This new number is returned to
the calling process together with certain additional
file characteristics, for example type (e.g. binary)
and record size. All subsequent file-process commu-
nication will then go through this new port, until a
CLOSE operation terminates the liaison and frees the
port.

B. Dialogue Control, including the READ and WRITE
functions. In case of sequential access, addressing
of file components is relatively simple and consists
of updating line and page pointers (text files) or
record pointers (binary files) after each transfer.
Useful positioning functions to be added for this
case are BACKSPACE (decrease pointers by 1) and
REWIND (reset pointers).

For direct access the addressing must be done by
page or record designators which are mapped in the
VH to the requested file component by means of an
appropriate index containing the physical address of
each directly accessible subdivision of that file.
This function is performed by a SEEK operation prior
to the actual READ or WRITE.

The actual data transfer occurs after the initial
READ or WRITE request has been acknowledged by the
micro to whom it was addressed; the "writer' will
thereafter send one or more letters containing the
requested data to the ''reader", terminating with a
special message indicating the end of transmission.
One or more records and even whole files may be sent
this way following a single READ/WRITE request.

D. Other Functions needed in the protocol are:

(i) The CREATE operation to establish a new file,
requiring the host to allocate storage space
and enter new names and addresses into the file
directory together with other information (e.g.
access restrictions) needed for proper file
protection.

(ii) The DELETE operation to purge an existing file,
erasing all references to it in the directory
and freeing the storage space it occupied.

(iii) The CHANGE operation to modify a number of file
parameters such as its name, protection mode,
password, etc.

A number of implementations aspects, such as mes-
sage formats, function codes and address size, are
discussed at greater length in the aforementioned
Virtual Terminal Protocols™~» In view of their
open-ended design, these proposals could be adopted
for our purpose with only minor additions. Additional
file ('bulk") transfer functions are presented in
and while we had to omit a number of operational
details for the sake of brevity, the infrastructure
presented in this paper should be quite adequate
for a relatively powerful and flexible 0S.

5. CONCLUSION

Since a conventional general-purpose 0S is gene-
rally too large for implementation on a mini-computer
system, we divide it into functional modules and imple-
ment a certain number of them on several independent
micro-processors in order to reduce the overhead in
the central wnit. These micros are in particular
responsible for controlling all peripheral device I/0
operations and for transferring information between
them and main memory. Communications are achieved by
means of packet switching, and a higher level end-to-
end protocol, providing for a number of file access
functions, is also introduced.

This approach makes it feasible to develop a
hardware system, based on low-cost components con-
nected by a common bus, into a relatively powerful and
flexible computing tool by means of an OS design empha-
sizing distribution of functions and concurrency of
operations. The device controlling micros are power-
ful enough to emulate communication protocols similar
to those found in computer networks. A properly
designed bus structure, capable of message routing and
multiplexing host-to-host communication over the bus
(or time-sharing its use according to some priority
scheme), should provide sufficient hardware capabili-
ties for implementing proper packet switching trans-
mission facilities.

The approach is also applicable to larger instal-
lations (to reduce the overhead in the central unit),
systems with remote job entry facilities or computers
connected to a private or public data network. In
this case the lower level packet switching facilities
would of course be provided by the network and the
end-to-end protocol would be built on top of them.
Basing the design of communications between 0S compo-
nents on standard network access protocols would en-
sure larger compatibility and flexible expansion pos-
sibilities for the system.

Unfortunately, different manufacturers tend to
handle files and data transfers their own way. For
increasing compatibility between different systems a
general end-to-end protocol, providing users with a
set of file access and manipulation facilities, should
be implemented on all host computers in a network to
ensure efficient host-to-host communication at a level
above packet-switching. Since there exists already a
set of standards for the lower levels of communica-
tions, it is highly desirable that a standard file
access protocol be developed in sufficient detail for
future implementation.

6. REFERENCES

1. P. Brinch Hansen: Operating System Principles,
Prentice-Hall, 1973.

2. The COMTRE Corp., A.P. Sayers, Edit.:
Systems Survey, Auerbach, 1971.

3. P. Brinch Hansen: The Programming Language Con-
current PASCAL, IEEE Trans. on Software Engin.
1,2, June 1975,

4. R.S. Fabry: Dynamic Verification of Operating
System Decisions, Comm. ACM, vol. 16, no. 11,
pp. 659-668, Nov. 1973.

5. W.A. Wulf et al.: HYDRA - The Kernel of a Multi-
processor Operating System, Comm. ACM, vol. 17,
no. 6, pp. 337-345, June 1974.

6. D.J. Farber, K.C. Larson: The Structure of a
Distributed Computing System - Software, Proc.
Symp. Computer - Comm., Networks and Teletraffic,
pp. 539-545, Brooklyn, April 1972.

7. E.G. Manning, R.W. Peebles: A Homogeneous Network
for Data Sharing: Communications, CCNG Rep. E-12,
Univ. of Waterloo, May 1974.

8. H. Aiso et al.: A Minicomputer Complex - KOCOS,
Proc. 4th Data Comm. Symp., ACM-IEEE, pp. 5-7 to
12, Oct. 1975.

9. Control Data 6000 Series Computer Systems Refer-
ence Manual, CDC Publ. No. 60100000.

10. Control Data Corp. NOS/BE1 Reference Manual, CDC
Publ. No. 60493800.

11. D.K. Branstad: Encryption Protection in Computer
Data Communications, Proc. 4th Data Comm. Symp.,
ACM-TEEE, pp. 8-1 to 7, Oct. 1975.

12, C.S. Carr, S.D. Crocker, V.G. Cerf: Host-Host
Communication Protocol in the ARPA Network, Proc.
Spring Joint Comp. Conf., pp. 589-597, 1870.

13. V. Cerf et al.: Proposal for an International
End-to-End Protocol, INWG Gen. Note # 96, IFIP
W.G. 6.1, July 1975,

14, H. Zimmermann: The CYCLADES End-to-End Protocol,
Proc. 4th Data Comm. Symp., ACM-IEEE, pp. 7-21 to
26, Oct. 1975.

15. H. Zimmermann: Proposal for a Virtual Terminal
Protocol, Reseau CYCLADES, IRIA, Jan. 1976.

16. P. Schicker, A. Duenki: Virtual Terminal Defini-
tion and Protocol, Comp. Comm. Review, ACM,
vol, 6, no. 4, Oct. 1976,

17. P. Schicker, A. Duenki, W. Baechi: Bulk Transfer
Function (Proposal), INWG Protocol 31, European
Informatics Network, EIN/ZHR/75/20, Sept. 1975.

Operating

