
OPERATING SYSTEM DESIGN WITH 
COMPUTER NETWORK COt441]NICATION PROTOCOLS 

Wilfried G. PROBST 
Dept. of Computer Science, 

Concordia University 

Gregor V. BOCHMANN 
D~p. d ' informat ique  et de recherche ap~ra t ionne l le ,  

Universi t~ de Montreal, 

Montreal, Qugbec, Canada. 

In view of the size and complexity of modern 
operating systems, this paper proposes their subdivi- 
sion into a set of smaller functional modules and the 
implementation of a number of their functions on sepa- 
rate hardware processors. The information transfer 
requirements resulting from physically separated system 
components are examined and the adaptation of a stan- 
dard end-to-end protocol is suggested for an efficient 
solution to the interprocess communication problems. 

I. INTRODUCTION 

The last 25 years have witnessed rapid progress 
in electronics and computer hardware, with drastic im- 
provements in the areas of computational speed, infor- 
mation storage volume and input-output (I/O) capabili- 
ties. Efficient utilization of these hardware re- 
sources would not have been possible, however, without 
a corresponding development of software facilities, 
designed to allow shared user access to a computer 
complex and optimized throughput of their jobs. 

Section 2 of this paper briefly covers the evolu- 
tion of these system facilities and describes the basic 
structure and components most commonly encountered in 
modern operating systems (OS). It shows not only their 
continuous expansion in capacity and flexibility, but 
also their growth in complexity and size which has led 
to increasingly large requirements of processor time 
and memory space. While this overhead may still be 
within acceptable limits on large scale computers, it 
becomes really serious on small mini-computers which 
are enjoying a widespread popularity nowadays due to 
their low cost/performance ratios. 

Section 3 analyses various possible hardware and 
software solutions to this problem. It then proposes 
an approach which consists of dividing the normally 
main memory resident part along functional lines into 
a set of modules implementing a certain number of them 
on separate micro-processors and thus obtaining an OS 
where the basic software is distributed over distinct 
hardware units. In particular a major portion of all 
I/0 processing routines are removed from the central 
processor (CP) and the resulting system becomes not 
only smaller and less complex, but it is also capable 
of an even higher degree of concurrency in most com- 
puter operations than a normal central memory resident 
one. The various advantages as well as the additional 
requirements of such an approach are discussed. While 
it will decrease the overhead in the central unit and 
improve the flexibility of information flow through 
the system, it also requires proper links between 
physically separated system components. 

Section 4 deals with this aspect and indicates 
how general techniques developed for computer networks 
can be used for an efficient solution of the communica- 
tion problems within a distributed OS. More specifi- 
cally it is shown how protocols designed for virtual 

terminal connection and dialogue are quite suitable 
for adaptation to the requirements of properly con- 
trolled information flow within the system. 

Finally, in order to illustrate all these con- 
cepts, it is shown how a relatively powerful OS could 
be implemented on a low-cost mini-computer system, 
using a number of micro-processors to handle most 
tasks associated with I/O operations, including file 
access, data transfer and peripheral device control. 
Possible connection of this system to a public data 
network is also discussed. 

2. OPERATING SYSTEMS BACKGROUND 

The basic purpose of any OS is to allow a group 
of people to share the use of a complex computer 
installation in an efficient manner, in order to maxi- 
mize the throughput of their jobs . Considering the 
capabilities as well as the cost of modern hardware, 
we are faced with the non-trlvial task of operating 
the computer in such a way as to ensure optimal use 
of all its components and thus hopefully achieving 
the above-mentioned goal. 

2.1 Historical Evolution 

The limited capabilities and low speed of the 
first hardware generation did not permit much sharing 
of resources in the early days of computing. The 
entire computer installation was usually allocated to 
one user at a time, most operating procedures were 
done manually and OS software was practically 
non-existant. 

The introduction of a number of improvements and 
new developments since the late 1950's increased com- 
puting power and speed by several orders of magnitude, 
but hardware complexity also reached a point where the 
skills of an average user were no longer sufficient to 
handle its operation efficiently. To mention only a 
few examples, computers were equipped with increa- 
singly numerous and complex peripherals and I/O opera- 
tions were performed by means of autonomous direct 
memory access channels (DMAC), capable of operating 
in parallel with the CP. Sophisticated interrupt 
systems enabled automatic detection of special condi- 
tions as well as synchronization between concurrent 
processes and, together with appropriate memory pro- 
tection mechanisms, provided the necessary infra- 
structure for elaborate multiprogramming and time- 
sharing of hardware resources. 

Standard software facilities were therefore intro- 
duced to provide the basic services required for the 
complicated task of operating the different units of 
a modern computer. For example, input~output control 
systems provided the necessary I/O functions and super- 
visors (monitors) handled interrupt processing, re- 
source allocation and job scheduling. This software 

4-19 



c o n s t i t u t e s  t h e  b a s i s  o f  any modern OS and t h e  u s e r  
communicates w i t h  i t  by means o f  an a p p r o p r i a t e  com- 
mand l anguage .  

2.2 Basic Structure and Main Components: 

In order to perform the various tasks outlined in 
the previous paragraphs, the classical single-processor 
0S has become a very large software system with a com- 
plex structure, incorporating many different compo- 
nents. Those performing supervisory functions which 
are called upon most frequently and whose prompt execu- 
tion is essential (e.g. interrupt processing), form a 
nucleus that must reside in central memory (C~ at all 
times. Other less critical ones are normally placed on 
secondary storage to reduce CM overhead and are loaded 
only when required, overlaying routines which are no 
longer needed at that moment. The trade-off of this 
scheme, however, is an increase of CP time overhead, 
caused by those swapping operations. 

The main part~ of a typical OS can be briefly 
defined as follows-, where we have emphasized the 
specific functions of those components which are more 
closely related to the following sections of this 
paper. 

A. Executive Control Functions 

This part is responsible for maintaining real-time 
execution control of the system environment, in parti- 
cular: 

(i) Job scheduling, resource allocation and event 
monitoring. 

( i i )  I /O c o n t r o l ,  i n c l u d i n g  I /O s c h e d u l i n g ,  d a t a  
t r a n s f e r  and d e v i c e  m a n i p u l a t i o n .  

(iii) System communication, including operator console 
support and I/O queue maintenance (spooling). 

( i v )  Hardware e r r o r  d e t e c t i o n  and r e c o v e r y ,  program 
e r r o r  c o n t r o l  ( o v e r f l o w s ,  e t c . ) .  

(v) Suppor t  f o r  t i m i n g  and debugging  s e r v i c e s .  

( v i )  Accoun t ing  p r o c e d u r e s .  

B. STstem Management Ptmctions 

This  p a r t  c o n t a i n s  t h e  non r e a l - t i m e  components 
o f  t h e  OS, s u p p o r t i n g  b o t h  sys tem and a p p l i c a t i o n  
programs by p r o v i d i n g  s e r v i c e s  such as OS management 
( e . g .  sys tem g e n e r a t i o n ) ,  program m a i n t e n a n c e  ( i n c l .  
l i b r a r i e s  and c a t a l o g u e s ) ,  c o m p i l e r  i n t e r f a c e s  and 
s u p p o r t  u t i l i t i e s .  

C. Data Manipulation FunctiOns 

This  t h i r d  p a r t  o f  t h e  OS a l lows  t h e  u s e r  to  
acces s  and p r o c e s s  d a t a  i n  g e n e r a l .  To m en t i on  j u s t  a 
few examples ,  we u s u a l l y  f i n d :  

( i )  F i l e  management f a c i l i t i e s ,  i n c l u d i n g  d i r e c t o -  
r i e s  and u s e r  a c c e s s  c o n t r o l .  

(ii) I /O s u p p o r t  f a c i l i t i e s  f o r  d i f f e r e n t  d a t a  
a c c e s s  modes ( e . g .  s e q u e n t i a l )  and r e c o r d  
b l o c k i n g .  

(iii) 

(iv) 

F i l e  d i s p l a y  and copy f a c i l i t i e s .  

P e r i p h e r a l  d e v i c e  s u p p o r t ,  i n c l u d i n g  fo rmat  
c o n v e r s i o n  and d a t a  e d i t i n g .  

While t h e r e  a r e  s e v e r a l  s m a l l e r  y e t  s u c c e s s f u l  
s p e c i a l - p u r p o s e  sys tems  ( e . g .  d e d i c a t e d  t o  i n t e r a c t i v e  
t i m e s h a r i n g ) ,  t h e  approach most o f t e n  t a k e n  by major  
computer  m a n u f a c t u r e r s  has  been  t o  b u i l d  a s i n g l e ,  
l a r g e  g e n e r a l - p u r p o s e  sys tem which o f f e r s  a wide 
v a r i e t y  of  s e r v i c e s .  T y p i c a l  examples ,  such as 
OS/Z60 (IBM), have i n d e e d  become v e r y  l a r g e ,  s p e c i a l l y  
i f  compi l e r s  and u t i l i t i e s  a r e  a l s o  i n c l u d e d .  The 
overhead  c r e a t e d  by t h e s e  con temporary  OS t h r e a t e n s  
t o  d e f e a t  t h e  v e r y  pu rpose  f o r  which t h e y  were o r i g i -  
n a l l y  d e v e l o p e d ,  namely a more e f f i c i e n t  use  o f  t h e  
ha rdware .  

F i r s t l y ,  i t  i s  no t  uncommon t o  s ee  r e s i d e n t  OS 
r o u t i n e s  occupy more t h a n  25% of  t h e  main memory, 
t h u s  d e c r e a s i n g  t h e  amount a v a i l a b l e  to  u s e r s ;  on 
s m a l l  sys tems  t h i s  p e r c e n t a g e  can be  even l a r g e r .  
Second ly ,  because  of  t h e  numerous s u p e r v i s o r y  func -  
t i o n s  t hey  have  t o  p e r f o r m ,  a s u b s t a n t i a l  p o r t i o n  o f  
t o t a l  e x e c u t i o n  t ime  i s  s p e n t  by  t h o s e  r o u t i n e s  do ing  
administrative work, while user tasks wait for the CP 
to become available. Finally, no matter how carefully 
programmed, they will inevitably be error-prone in 
view of their size alone. 

A number of  changes and i n n o v a t i o n s  i n  hardware  
as w e l l  as OS s t r u c t u r e  and d e s i g n  have  t h e r e f o r e  been 
s u g g e s t e d ,  w i t h  t h e  o b j e c t i v e  o f  improv ing  o v e r a l l  
pe r fo rmance  by s o l v i n g  some o f  t h e  p rob lems  o u t l i n e d  
above.  On t h e  s o f t w a r e  s i d e  we have  most n o t a b l y  t h e  
deve lopment  o f  s y n c h r o n i z a t i o n  p r i m i t i v e s  a t  low 
l e v e l s  ( e . g .  semaphores)  as w e l l  as h i g h e r  ones  
( e . g .  ma i lboxes  and m o n i t o r s l ) .  A number o f  program-  
ming t e c h n i q u e s  and t o o l s  a r e  a l s o  b e i n g  i n t r o d u c e d ,  
f o r  example modular  d e s i g n ,  s t r u c t u r e d  programming 
and even s p e c i a l  l anguages  s u i t e d  f o r  s t r u c t u r e d  OS 
d e s i g n  ( e . g . ,  C o n c u r r e n t  PASCAL3). 

In  t h e  nex t  s e c t i o n  we w i l l  b r i e f l y  men t ion  some 
o t h e r  p r o p o s a l s  i n v o l v i n g  d i f f e r e n t  ha rdware  u t i l i z a -  
t l o n  as w e l l .  We w i l l  t h e n  p r e s e n t  a s o l u t i o n  i n  
which modular  d e s i g n  t e c h n i q u e s  a r e  c a r r i e d  ove r  t o  
t h e  hardware  i m p l e m e n t a t i o n  by a s s i g n i n g  i n d i v i d u a l  
p r o c e s s o r s  t o  d i f f e r e n t  modules .  Th i s  a p p r o a c h ,  
p a r t i c u l a r l y  a t t r a c t i v e  i n  t h e  case  o f  s m a l l e r  
l o w - c o s t  c o n f i g u r a t i o n s ,  s h o u l d  p r o v e  to  be  g e n e r a l l y  
u s e f u l  i n  a wide range  o f  a p p l i c a t i o n s  such as sys tems 
w i t h  remote  job  e n t r y  o r  computers  and  t e r m i n a l s  con-  
n e c t e d  t h rough  p u b l i c  n e t w o r k s .  

3. DISTRIBUTED OPERATING SYSTEMS 

In  o r d e r  t o  s u p p o r t  g e n e r a l - p u r p o s e  s y s t e m s ,  
l a r g e  and e x p e n s i v e  computer  mainf rames  were p r a c t i -  
c a l l y  manda tory  u n t i l  r e c e n t l y .  The i n c r e a s i n g  use  
of  medium and l a r g e - s c a l e  i n t e g r a t i o n  t e c h n i q u e s  i n  
e l e c t r o n i c  c i r c u i t s  has  l ed  n e t  on ly  t o  r a p i d l y  
d e c r e a s i n g  ha rdware  c o s t s ,  bu t  a l s o  t o  t h e  d e v e l o p -  
ment o f  r e l a t i v e l y  i n e x p e n s i v e  y e t  power fu l  m i n i -  
computers  (min i s  f o r  s h o r t )  i n  t h e  l a t e  1 9 6 0 ' s .  
However, due t o  t h e i r  l i m i t e d  memory s i z e  and u s u a l l y  
l e s s  e l a b o r a t e  I /O and i n t e r r u p t  f a c i l i t i e s ,  t h e y  
o f t e n  o p e r a t e  u n d e r  c o n t r o l  o f  a g r e a t l y  s i m p l i f i e d  
OS capable of just a few specific tasks (e.g. data 
acquisition, simple time-sharing or sequential batch 
only). Their growing popularity has therefore stimu- 
lated work in computer architecture as well as in OS 
design, with the objective of implementing more 
powerful and flexible software systems on mini-compu- 
ter b a s e d  hardware  c o n f i g u r a t i o n s .  

3 .1  M u l t i p r o c ~ s s i n g  p r i n c i p l e s  

One obvious  s o l u t i o n  t o  overcome t h e  r e s t r i c -  
t i o n s  imposed by l i m i t e d  hardware  c a p a b i l i t i e s  con-  
s i s t s  o f  c o n n e c t i n g  s e v e r a l  m i n i s  t o g e t h e r  and fo rming  

4-20 



a multi-processor complex. C u r r e n t  efforts in this 
area seem to be following two main directions, namely: 

( i )  I n t e g r a t i o n  o f  s e v e r a l  p r o c e s s o r s  i n t o  one p r o -  
c e s s i n g  sys tem,  e q u i v a l e n t  i n  comput ing power 

t o  much l a r g e r  c o n v e n t i o n a l  mach ines ;  t h e  PRIME p r o -  
j e c t  4 and t h e  C.mmp (HYDRA) sys tem ~ a r e  t y p i c a l  exam- 
p l e s  o f  t h i s  approach .  

(ii) Connection of independant and not necessarily 
identical processing systems to ~are hardware 

and software resources; the DCS system , the MININET 
prototype 7 and the KOCOS complex 8 illustrate this 
direction. 

A brief analysis of any OS, revealing the set of 
basic functions outlined in the previous section, 
would obviously suggest its decomposition into a 
group of modules, each with a specific purpose. Fur- 
thermore, it can also be seen that many of the tasks 
performed by these modules are quite independent of 
each other and could be performed concurrently. On a 
single processor true parallelism is of course impos- 
sible; instead the processor switches from one task 
to the other by means of intricate interrupt proce- 
dures, thus reducing delays to acceptable levels. 

This  modular  OS des ign  concept  s u g g e s t s  t h e r e f o r e  
y e t  a n o t h e r  way t o  i n c r e a s e  t h e  power o f  any sys tem:  
r educe  t h e  CP overhead  by f r e e i n g  i t  o f  a number o f  
t a s k s  which do n o t  r e q u i r e  i t s  c o n s i d e r a b l e  comput ing 
power and have  them process%d by s e p a r a t e  hardware  
u n i t s .  The CDC-5000 s e r i e s  ~ r e p r e s e n t s  an e a r l y  
example o f  t h i s  des ign  p h i l o s o p h y ;  c e r t a i n  f u n c t i o n s  
(mos t ly  I/O) a re  implemented  on s o - c a l l e d  ' ~ e r i p h e r a l  
processors" each of which has a separate memory, 
enabling them to execute programs independently of the 
CP and each other. A common CM is used for communica- 
tion and information exchange between all processors. 

Recent hardware and software developments have 
enabled us to consider a more flexible and generalized 
extension of modular OS design into hardware archi- 
tecture. In view of the rapid development of truly 
low-cost micro-processors (micros for short) since 
1971, the practical implementation of a larger number 
of functional units on dedicated, autonomous pro- 
cessors is becoming economically feasible nowadays; 
the computational power required can be provided by 
one or more minis. 

In  such a d i s t r i b u t e d  OS o n l y  t h o s e  modules whose 
f u n c t i o n  and o p e r a t i o n a l  env i ronmen t  r e q u i r e  t h e  use  
of  a CP, would remain  i n  t h e  c e n t r a l  ~mi t .  Device 
c o n t r o l l i n g  and I /O h a n d l i n g  r o u t i n e s  a re  t h e  most 
obv ious  c a n d i d a t e s  f o r  r e d i s t r i b u t i o n .  There  i s  
i ndeed  no v a l i d  r e a s o n  r e q u i r i n g  t h e  CP to  keep t r a c k  
o f  a v a r i e t y  o f  d e v i c e - d e p e n d a n t  d e t a i l s  ( e . g .  s p e c i -  
f i c  channe l  commands and s t a t u s  b i t s )  each t ime  a 
program i s  s imply  r e q u e s t i n g  t h e  t r a n s f e r  of  a b l o c k  
of  d a t a  be tween  i t s  b u f f e r  and a d e s i g n a t e d  p e r i p h e r a l  
u n i t .  O the r  r o u t i n e s  which c o u l d  q u i t e  l o g i c a l l y  be  
implemented  o u t s i d e  t h e  c e n t r a l  u n i t ,  i n c l u d e  ma jo r  
p o r t i o n s  o f  t he  f i l e  management sys tem ( d i s c  and t a p e  
c o n t r o l l e r s )  and some p a r t s  o f  t h e  job  c o n t r o l  func -  
t i o n s ,  e . g .  s p u o l i n g  and f i l e  t r a n s f e r s  be tween  
dev i ce s  w i t h o u t  need  f o r  CP i n t e r v e n t i o n .  

Fig. 1 shows a hardware configuration, consisting 
of a TI-980B mini-computer system equipped with the 
peripherals usually needed for a meaningful system, 
on which experimental design work of distributed soft- 
ware is being carried out at present. The OS proposed 
for this configuration will be essentially file- 
oriented, similar in concept to those used in the 
above-mentioned CDC-6000 series (cf. SCOPE or 

Processor 
CP/CM 

] DMAC 

Devices Micros 

] : - [Reques ts  

' ~ Job  
Queues* 

C o ~ o n  Ext ens ions : 

Bus Other  devices, 
Connection to 
public network, 
e t c .  

Fig. 1 * On DP or own floppy disc. 

NOSI0). As illustrated in Fig. 2, these files will be 
used in normal operation as input and/or output by 
several entities such as user tasks, utility routines, 
etc., called processes for short. The individual com- 
ponents of this system and the assignment of various 
functions to a number of micros are described in 
greater detail in the next section. 

@ 
I 

Proces s  

N = 0, I, 2 ... 

Fig.  2 

4 - 2 1  



3.2 Mic ro -Processo r  Funct ions  

Each micro w i l l  handle  the  p h y s i c a l  I / 0  opera -  
t i o n s  f o r  a p a r t i c u l a r  dev i ce  or  type  o f  d e v i c e ,  t ak ing  
care  o f  the  t a sks  normal ly  performed by the  dev ice  
s e r v i c e  r o u t i n e s  in  the  OS s u p e r v i s o r .  I t  w i l l  send a 
b lock  o f  i n fo rma t ion  from an i n t e r n a l  b u f f e r  to  a 
common bus  (or  to  a network) in  case o f  a system input  
and r e c e i v e  a b lock  from the  bus in case  o f  ou tpu t .  
Depending on the  type  of  dev ice  i t  c o n t r o l s ,  t he  micro 
may a l so  per form a number o f  a d d d i t i o n a l  f u n c t i o n s  
s u c h  as :  

(i) Cardreader :  Cont ro l  card i n t e r p r e t a t i o n  ( to  
de termine  d e s t i n a t i o n  o f  inpu t  f i l e s ) ;  charac-  
t e r  code conve r s ion .  

(ii) Lineprinter: Code conversion; vertical and 
horizontal format control. 

( i i i )  

(iv) 

Job s c h e d u l e r :  Job input  and output  queue 
maintenance (batch j o b s ) ;  c o n t r o l  card i n t e r -  
p r e t a t i o n  ( to  i d e n t i f y  use r  t a s k s ) ;  t a s k  
s chedu l ing  and i n i t i a l i z a t i o n .  

Resource allocator: Process request queue 
maintenance; resource allocation; prevention 
of deadlocks. 

(v) 

(vi) 

Magnetic  t ape :  Label p r o c e s s i n g ;  
b l o c k i n g / d e b l o c k i n g  of  da ta  r e c o r d s ;  t ape  p o s i -  
t i o n i n g  ( e . g .  r ewind) ;  hand l ing  o f  m u l t i p l e  
f i l e s  p e r  r e e l .  

Disc: On-line file management (incl. file 
directories); access control; file positioning 
(e.g. seek); blocking/deblocking; disc space 
allocation. 

A typical device-micro implementation of these 
functions contains the basic components shown in Fig. 3 
and requires each of them to be provided with a cor- 
responding amount of private memory. The procedural 
and constant parts should be in read-only memory (ROM) 
for added protection. 

As indicated above (see also Fig. I), all micros 
are able to communicate directly with each other. 
This raises a number of problems the solution of which 
necessarily influenced the design of this system; we 
had to consider in particular the following: 

Proper  r o u t i n g  o f  i n fo rma t ion  ove r  t he  common 
bus ;  t h i s  d i f f i c u l t y  i s  overcome by means of  
p roper  bus des ign  and t h e  adopt ion o f  app rop r i -  
a te  message formats  and t r a n s m i s s i o n  p r o t o c o l s .  

Proper assignment of files to individual pro- 
cesses; the resource allocation micro controls 
the use of all peripheral system components in 
order to avoid conflicts and deadlock problems. 

RAM* ROM 

I /O Buffers[_ . ~ .  [ Programs, 
V a r i a b l e s [ -  -[ ]- [ .Constants 

Device, 
Common Bus * Random Access Memory 

Fig .  3 

4-22 

3.3 Benefits and Drawbacks 

Let us now examine some of the potential advan- 
tages offered by a system designed and implemented 
along these lines. 

A. Reduced CP overhead 

The p a r t  o f  the  OS which s t i l l  r e s i d e s  in the  cen- 
t r a l  u n i t  r e q u i r e s  a s m a l l e r  amount of  CM space and 
less frequent use of the CP, since it has fewer func- 
tions to perform than in a conventional system. This 
is particularly important in the case of a mini- 
computer configuration. 

B. Flexible Information Flow 

The flow of information through the system becomes 
far more flexible and efficient. In contrast to a 
traditional system where all I/0 transfers involve the 
CM, it is now feasible to exchange data directly bet- 
ween any two peripheral units, e.g. card-to-disc or 
tape-to-printer transfers. A control card specifying 
source and destination files enables the OS to set up 
a direct transfer between the two corresponding 
micros. A batch job can be identified by a special 
JOB card recognized by the Cardreader which then sends 
it directly to the Scheduler and its job input queue. 
This design property therefore permits the implementa- 
tion of a truly concurrent spooling system, elimina- 
ting unnecessary buffers and requiring only one pas- 
sage through CM instead of the usual three for each 
job. Fig. 4 shows the normal path of a batch job 
through such a system and indicates several other pos- 
sible data paths. 

CP/CM [ 

Input  _ ~- [.~ Output 
Queue [ ~  SCHED.]- "1 Queue 

In fo rmat ion  f low : 

• JOB command ( spoo l ing)  

F ig .  4 . . . .  ~ COPY command ( f i l e  t r a n s f e r )  

C. Inc rea sed  P r o t e c t i o n  

One o f  t he  t h r e a t s  a f f e c t i n g  s t andard  OS r e l i a b i -  
l i t y  i s  t he  p o s s i b i l i t y  o f  a c c i d e n t a l  e r a su re  o f  sys -  
tem components,  t a b l e s  o r  v a r i a b l e s  due to  programming 
o r  des ign  e r r o r s .  Phys i ca l  s e p a r a t i o n  o f  modules and 
t h e i r  implementa t ion  on d i f f e r e n t  hardware p r o c e s s o r s  
w i l l  p rov ide  b e t t e r  p r o t e c t i o n  aga ins t  such f lows and 
the  use o f  ROM w i t h i n  the  micros p r o v i d e s  even f u r t h e r  
s a f e g u a r d s ,  as s t a t e d  b e f o r e .  As f a r  as p r i v a c y  i s  
concerned,  a d d i t i o n a l  s e c u r i t y  may be p rov ided  fo r  



both  t r a n s f e r  and s t o r a g e  of  i n f o r m a t i o n ,  by i n c l u d i n g  
e n c i p h e r i n g  and d e c i p h e r i n g  mechanisms i n  t h e  micros  
and a l lowing  t h e  u s e r  t o  s p e c i f y  h i s  own s e c r e t  
e n c r y p t i o n  k e y l l ;  t h e  Card reade r  might  f o r  example 
scramble  a l l  c h a r a c t e r s  a cco rd ing  to  a key p r o v i d e d  
by t h e  owner o f  t he  i n f o r m a t i o n ,  b e f o r e  i t  i s  s e n t  
f u r t h e r .  Data t hus  s t o r e d  could then  only  be r e -  
t r i e v e d  and c o r r e c t l y  i n t e r p r e t e d  i f  t h e  key i s  a l s o  
s u p p l i e d .  

D. Manufacturer-independent Device Selection 

This system also makes it easier to connect peri- 
pheral units from different manufacturers to a given 
computer. Once a micro has been programmed to handle 
the particular device, the actual interfacing problems 
are greatly reduced as long as information transfers 
between system components are governed by a standard 
communication protocol. There would be no more need 
for introducing new device service routines into the 
CM resident portion of the OS and interfacing them 
with existing ones. Obviously, whenever a device is 
replaced by a different one, the micro in question 
must be reproKrsa~ned. 

F i n a l l y ,  l e t  us now c o n s i d e r  t h e  two main d i s a d -  
van tages  o f  such a d i s t r i b u t e d  o p e r a t i n g  sys tem.  

E. Additional Hardware Requirements 

When compared to  a s t a n d a r d  sys tem,  the  p r i n c i p a l  
hardware a d d i t i o n  c o n s i s t s  o f  t h e  va r i ous  micros and 
t h e i r  memories.  But wi th  s t e a d i l y  d e c r e a s i n g  hardware 
c o s t s  t h e  above-ment ioned  b e n e f i t s  shou ld  be worth 
t h e i r  p r i c e ,  which i s  even p a r t i a l l y  o f f s e t  by a 
r e d u c t i o n  in  t he  amount o f  CM needed .  

F. Communication Problems 

! JOB user and job information (line I) 

! COPY file-I To file-2 (line 2) 

! FORTRAN ( e t c . )  

Source program 

EXECUTE 

EOF (end of file) 

Co) Binary files, containing bit strings or binary 
words in a machine-dependent format; they are 
normally produced by certain processes such as 
compi le rs  and a s s e m b l e r s ,  i . e . ,  o b j e c t  programs,  
or they  may be c r e a t e d  from the  ou tpu t  o f  a u s e r  
program. They are  l o g i c a l l y  subd iv ided  i n t o  
b i n a r y  r e c o r d s  o f  v a r i a b l e  l e n g t h .  

Both types  of  f i l e s  may be a c c e s s e d  in  b a s i c a l l y  
two d i f f e r e n t  ways, d e f i n e d  as f o l l o w s :  

( i )  S e q u e n t i a l  a c c e s s .  When t h e  f i l e  i s  f i r s t  b u i l t ,  
i t s  s u b d i v i s i o n s  (pages o r  r e c o r d s )  are  p l aced  one 
a f t e r  t he  o t h e r  and may l a t e r  be a c c e s s e d  on ly  in  
t he  same sequence in  which they  were i n i t i a l l y  
c r e a t e d ,  i . e . ,  i n  o r d e r  to  ge t  t o  r e c o r d  n of  a 
b i n a r y  f i l e  one must have a c c e s s e d  r eco rds  
1 , 2 , . . . , n - 1  p r e v i o u s l y .  

( i i )  D i r e c t  a c c e s s .  Each s u b d i v i s i o n  i s  d i r e c t l y  ad- 
d r e s s a b l e  and may be a c c e s s e d  i n d e p e n d e n t l y  from 
the  o t h e r s .  This  can be ach i eved ,  f o r  example,  
by g i v i n g  each r e c o r d  a number ( r e l a t i v e  t o  the  
f i r s t  one) or  a unique key which can be mapped 
i n t o  i t s  address  by u s i n g  some k ind  o f  i ndex  
t a b l e .  

As s t a t e d  b e f o r e ,  p r o p e r  communication between 
d i s t r i b u t e d  sys tem components r a i s e s  a number o f  p r o -  
blems no t  encoun te red  in  s t a n d a r d  OS, where most i n t e r -  
p r o c e s s  exchanges a re  s imply ach ieved  e i t h e r  by means 
o f  sha red  v a r i a b l e s  in  t he  CM or  by p a s s i n g  add res s  
pa rame te r s  ( p o i n t e r s )  and where a s u b r o u t i n e  c a l l  can 
be pe r fo rmed  by a s i n g l e  CP i n s t r u c t i o n .  In t h e  nex t  
s e c t i o n  we w i l l  look a t  t h e s e  d i f f i c u l t i e s  in  g r e a t e r  
d e t a i l  and propose  a s o l u t i o n  i n s p i r e d  by s i m i l a r  
problems o c c u r r i n g  in  computer network conmunica t ion .  

4. CO~fUNICATION BETWEEN SYSTEM COMPONENTS 

In the previous section we have discussed a few 
characteristics of a distributed OS; we shall now pre- 
sent the basic principles involved in its operation. 
Let us begin by looking at the file concept in greater 
detail. 

There are two basic types of files, each with its 
own internal subdivisions, as follows: 

(a) Text files, containing character information such 
as source programs and input data. The informa- 
tion in a text file is logically subdivided into: 

- Pages,  d e f i n e d  as a ( v a r i a b l e  s i z e d )  sequence  
o f  l i n e s ,  

- L ines ,  d e f i n e d  as a v a r i a b l e  sequence o f  
c h a r a c t e r s .  

A u s e r  job  f i l e ,  f o r  example,  could  have the  f o l -  
lowing t r a d i t i o n a l  s t r u c t u r e ,  where c o n t r o l  cards  a re  
i d e n t i f i e d  by a s p e c i a l  c h a r a c t e r  ( e . g .  !) 

There may be some device  dependant  r e s t r i c t i o n s  
imposed on f i l e s ,  however;  f o r  example,  f i l e s  f o r  
p r i n t e d  ou tpu t  should  no t  be b i n a r y  (a l though  o c t a l  
or hexadecimal  dumps might be o f  i n t e r e s t  t o  some) and 
d i r e c t  access  f i l e s  can only  be implemented on c e r t a i n  
types  o f  s t o r a g e  d e v i c e s .  

The des ign  o f  our d i s t r i b u t e d  sys tem al lows some 
p r o c e s s e s  to  s h a r e  a s i n g l e  p r o c e s s o r  (mul t iprogram-  
ming) ,  wh i l e  o t h e r s  are  implemented on s e p a r a t e  f u l l y  
d e d i c a t e d  ones .  The most impor tan t  problem t o  be 
s o l v e d ,  t h e r e f o r e ,  i s  t o  ensure  c o r r e c t  and e f f i c i e n t  
communication between OS components ,  i . e .  f i l e  acces s  
and t r a n s f e r  between micros  in  our case .  In t h e  nex t  
s e c t i o n s  we w i l l  show how computer network commtmica- 
t i o n  p r o t o c o l s  can advan tageous ly  be used f o r  t h i s  
purpose .  

4.1 End- to -end  Communication 

Standard  e n d - t o - e n d  p r o t o c o l s ,  implemented on top  
of the packet switching service in computer networks, 
have been proposed in order to provide users with a 

~ enerali zed interproces s communi cation facility 12,13 
4 . They are based on the notion of collections of 
communicating processes, each such collection sharing 
a set of common resources and thus constituting a 
so-called "Virtual Host" (VH) which appears as a 
single entity to the packet switching network. Each 
of those processes is associated with a unique '~ort" 
number for communication purposes and all the ports 
in a VH are grouped together forming a "Transport 
Station" (TS) which provides port-to-port communica- 
tion through the network. The introduction of the 
port concept as a network name space thus reduces the 
host-to-host protocol to a multiplexing of port-to- 
port, i.e. end-to-end protocols. 

4-23 



F i l e  Port 

Source  VH 

Fig. S 

Port Proc. 

D e s t i n .  VII 

* Well-known p o r t  
(File management) 

An a n a l y s i s  o f  t h e  communica t ions  i n  t h e  d i s t r i -  
b u t e d  C6 d e s c r i b e d  i n  t h e  p r e v i o u s  s e c t i o n  r e v e a l s  
many s i m i l a r i t i e s  w i th  computer  ne twork  i n f o r m a t i o n  
f low.  We may i n d e e d  c o n s i d e r  t h e  r e s o u r c e s  a s s o c i a -  
t e d  w i th  each o f  t h e  p r o c e s s o r s  (CP and mic ro s )  t o  
c o n s t i t u t e  a VH, and t h e  common bus  c o n n e c t i n g  them 
to  form a s i m p l e  ne twork  on which p a c k e t s  o f  i n f o r m a -  
t i o n  a re  s e n t  f rom s o u r c e  h o s t s  t o  d e s t i n a t i o n  h o s t s .  
S i m i l a r l y ,  s i n c e  each o f  t h o s e  p r o c e s s o r s  may c o n t a i n  
one or  more p r o c e s s e s  a c c e s s i n g  d i f f e r e n t  f i l e s ,  each 
c o r r e s p o n d i n g  VH w i l l  t h e r e f o r e  r e q u i r e  a TS, con- 
t a i n i n g  one p o r t  p e r  a c t i v e  p r o c e s s  or  open f i l e ,  i n  
o r d e r  to  m u l t i p l e x  t h e i r  a c c e s s  t o  t h e  b u s .  Th i s  way, 
as  an example ,  t h e  r e a d i n g  o f  a f i l e  A by a p r o c e s s  
P can be  a c c u r a t e l y  e q u a t e d  t o  an e n d - t o - e n d  t r a n s -  
f e r  be tween two p o r t s ,  as i n d i c a t e d  i n  F ig .  5. 

The packet switching facility carries informa- 
tion from a source TS to a destination TS, both of 
which are identified within the packet header by their 
addresses. Furthermore, since a TS is seen as a col- 
lection of ports from the communications side, speci- 
fic port numbers will also have to be carried; 
together with certain other pieces of information 
(e.g. function codes) they would form the transport 
header which precedes the actual packet textld. Port 
numbers are locally associated with corresponding pro- 
cess or file names and while certain o f  these associa- 
tions may be static (for some "well-known" system 
ports), most will have to be mapped dynamically by 
means of appropriate tables containing the names of 
currently active processes and open files. Although 
such mapping operations in the TS may seem unnecessa- 

rily complicated, they reduce substantially the amount 
of information required in the transport header (e.g. 
file user and owner names, etc.) and therefore simpli- 
fy information transfer; the assignment of the port 
numbers during the establishment of an end-to-end 
communication link will be discussed in the next 
section (of. SWITCH funtion). 

The end-to-end protocol provides for transfer of 
letters between ports within the context of their asso- 
ciation. Their size nn/st be such that any physical 
record in the system can be placed in a letter, to 
avoid fragmentation of data seen by the process as 
belonging logically together. If the letter exceeds 
the packet size, it will be divided into fragments by 
the sending TS and reassembled upon arrival by the 
destination TS, to be delivered as a whole the way it 
was sent. The protocol ensures proper reassembly by 
means of letter reference and fragment numbers and 
should also include error and flow control at the 
letter level for a reliable operation of the OS. Very 
short letters, or telegrams, may be used in special 
cases to signal some unusual event or an interrupt 
(e.g. status checks, stop sending, etc.). While net- 
work protocols were designed for an environment where 
t ime  d e l a y s  and l o s s  r a t e s  a r e  much l a r g e r  t h a n  i n  our  

4-24 

bus-coupled multiprocessor environment, we feel that 
the overhead they represent may be reduced to an ac- 
ceptable level (by some minor simplifications, if 
necessary) and should add substantially to the overall 
reliability of our OS. Further implementation details 
may be found in the afore-mentioned referencesl3,14. 

4.2 File Access and Data Transfer 

Connecting a user process to a file provides 
access to the information that the latter contains. 
Depending on its internal structure and the device on 
which it resides, this connection may however take 
different forms. We will therefore introduce the 
concept of Virtual File Access Protocol to define a 
standard file access method within the OS. This pro- 
tocol should make all files look alike to the acces- 
sing processes, no matter where they reside. In most 
computer networks, whether existing or proposed, the 
basic transport services are enhanced by introducing 
additional facilities into the host-to-host protocol, 
such as those provided by the TELNET subsystem in the 
ARPA network ~z. This concept i~a~%o illutrated by 
the "Virtual Termi~l Protocol ''~,IO and the "Bulk 
Transfer Function ''~', proposed to make a variety of 
terminals and file structures from different manu- 
facturers look logically identical in the way they 
interact with the network. In view of the environ- 
mental similarities, these ideas can easily be adapted 
to our distributed OS. Just as the above-mentioned 
terminals or files require some form of intelligence 
to take care of their local handling, each individual 
peripheral unit in the distributed OS is handled by a 
micro-processor, programmed to transfer information 
according to the common file access protocol which 
has to provide the following ftmctions: 

A. Connection Control, containing a set of initiali- 
zation directives for establishing connections between 
process and file entities, and for allowing such a 
connection to be changed; this liaison is established 
by exchanging identification, file characteristics and 
process'requirement messages 16 and corresponds basi- 
cally to an OPEN function. 

In  case  o f  s i n g l e  f i l e  d e v i c e s ,  e . g .  c a rd  r e a d e r  
and l i n e  p r i n t e r ,  t h e r e  w i l l  o n l y  be  one p o r t  i n  t h e  
VH and p r o c e s s - f i l e  l i n k i n g  i s  s t r a i g h t - f o r w a r d .  
M u l t i - p o r t  h o s t s ,  such  as  d i s c  and t a p e  c o n t r o l l e r s  
h a n d l i n g  s e v e r a l  f i l e s  c o n c u r r e n t l y ,  r e q u i r e  a more 
e l a b o r a t e  c o n n e c t i o n  p r o c e d u r e  f o r  e f f i c i e n t  and f l e x -  
i b l e  p o r t  a s s i g n m e n t .  The p r o c e s s  P e s t a b l i s h e s  
i n i t i a l  c o n t a c t  w i th  a wel l -known s y s t e m  p o r t  w i t h i n  
t h e  VH, which a c t s  as a common e n t r y  p o i n t  t o  t h e  
f i l e  management s y s t e m ,  and sends  h i s  r e q u i r e m e n t s ,  
e . g .  name o f  f i l e  and owner,  a c c e s s  mode ( r e a d / w r i t e ) ,  
e t c .  The VH u s e s  a f i l e  c a t a l o g u e  to  f i n d  i t ,  v e r i -  
f i e s  t h e  l e g i t i m a c y  o f  t h e  r e q u e s t  ( f i l e  p r o t e c t i o n )  
and t h e n  assigns a new p o r t  number t o  t h e  f i l e  ( see  
F ig .  5) by p e r f o r m i n g  a SWITCH f u n c t i o n  such  as t h e  
one d e s c r i b e d  i n  15. Th i s  new number i s  r e t u r n e d  t o  
t h e  c a l l i n g  p r o c e s s  t o g e t h e r  w i t h  c e r t a i n  a d d i t i o n a l  
f i l e  c h a r a c t e r i s t i c s ,  f o r  example t y p e  ( e . g .  b i n a r y )  
and r e c o r d  s i z e .  Al l  s u b s e q u e n t  f i l e - p r o c e s s  commu- 
n i c a t i o n  w i l l  t h e n  go t h r o u g h  th i s  new p o r t ,  u n t i l  a 
CLOSE o p e r a t i o n  t e r m i n a t e s  t h e  l i a i s o n  and f r e e s  t h e  
p o r t .  

B. Dialogue Control, including the READ and WRITE 
functions. In case of sequential access, addressing 
of file components is relatively simple and consists 
of updating line and page pointers (text files) or 
record pointers (binary files) after each transfer. 
Useful positioning functions to be added for this 
case are BACKSPACE (decrease pointers by I) and 
REWIND (reset pointers). 



For d i r e c t  access  t h e  a d d r e s s i n g  must be done by 
page o r  r e c o r d  d e s i g n a t o r s  which are  mapped in  t h e  
VH to the  r e q u e s t e d  f i l e  component by means o f  an 
a p p r o p r i a t e  index  c o n t a i n i n g  the  p h y s i c a l  address  o f  
each d i r e c t l y  a c c e s s i b l e  s u b d i v i s i o n  o f  t h a t  f i l e .  
This f u n c t i o n  i s  per formed by a SEEK o p e r a t i o n  p r i o r  
t o  t h e  ac tua l  READ or WRITE. 

The actual data transfer occurs after the initial 
READ or WRITE request has been acknowledged by the 
micro to whom it was addressed; the "writer" will 
thereafter send one or more letters containing the 
requested data to the "reader", terminating with a 
special message indicating the end of transmission. 
One or more records and even whole files may be sent 
this way following a single READ/WRITE request. 

D. Other Functions needed in the protocol are: 

(i) The CREATE operation to establish a new file, 
r e q u i r i n g  t h e  h o s t  t o  a l l o c a t e  s t o r a g e  space  
and e n t e r  new names and a d d r e s s e s  i n t o  t h e  f i l e  
d i r e c t o r y  t o g e t h e r  wi th  o t h e r  i n f o r m a t i o n  ( e . g .  
access  r e s t r i c t i o n s )  needed f o r  p r o p e r  f i l e  
p r o t e c t i o n .  

(ii) The DELETE operation to purge an existing file, 
erasing all references to it in the directory 
and freeing the storage space it occupied. 

(iii) The CHANGE operation to modify a number of file 
parameters such as its name, protection mode, 
password, etc. 

A number o f  i ~ p l e m e n t a t i o n s  a s p e c t s ,  such as mes- 
sage f o r m a t s ,  f u n c t i o n  codes and address  s i z e ,  a r e  
d i s c u s s e d  a t  g r e a t e r  l eng th  in  the  a fo remen t ioned  
V i r t u a l  Terminal  P r o t o c o l s  15,16. In view o f  t h e i r  
open-ended de s ign ,  t h e s e  p r o p o s a l s  could  be adopted  
f o r  our  purpose  wi th  only  minor a d d i t i o n s .  A d d i t i o n a l  
f i l e  ( '%ulk")  t r a n s f e r  f u n c t i o n s  a re  p r e s e n t e d  in  17 
and whi le  we had to  omit a number o f  o p e r a t i o n a l  
d e t a i l s  f o r  t h e  sake o f  b r e v i t y ,  the  i n f r a s t r u c t u r e  
p r e s e n t e d  in  t h i s  paper  shou ld  be q u i t e  adequate  
f o r  a r e l a t i v e l y  power fu l  and f l e x i b l e  0S. 

S. CONCLUSION 

Since  a c o n v e n t i o n a l  g e n e r a l - p u r p o s e  OS i s  gene-  
r a l l y  t oo  l a r g e  f o r  implementa t ion  on a min i -compute r  
sys tem,  we d iv ide  i t  i n t o  f u n c t i o n a l  modules and imple-  
ment a c e r t a i n  number o f  them on s e v e r a l  i ndependen t  
m i c r o - p r o c e s s o r s  in  o r d e r  to  reduce  t h e  overhead in  
t h e  c e n t r a l  u n i t .  These micros a re  in  p a r t i c u l a r  
r e s p o n s i b l e  f o r  c o n t r o l l i n g  a l l  p e r i p h e r a l  dev i ce  I/O 
o p e r a t i o n s  and f o r  t r a n s f e r r i n g  i n f o r m a t i o n  between 
them and main memory. Communications are  ach ieved  by 
means o f  packe t  s w i t c h i n g ,  and a h i g h e r  l e v e l  e n d - t o -  
end p r o t o c o l ,  p r o v i d i n g  f o r  a number o f  f i l e  access  
f u n c t i o n s ,  i s  a l s o  i n t r o d u c e d .  

This approach makes i t  f e a s i b l e  t o  deve lop  a 
hardware system, based on low-cost components con- 
n e c t e d  by a common bus ,  i n t o  a r e l a t i v e l y  power fu l  and 
f l e x i b l e  computing t o o l  by means o f  an OS des ign  empha- 
s i z i n g  d i s t r i b u t i o n  o f  f u n c t i o n s  and concur rency  o f  
o p e r a t i o n s .  The dev ice  c o n t r o l l i n g  micros a r e  power-  
f u l  enough to  emulate  communication p r o t o c o l s  s i m i l a r  
t o  t h o s e  found in  computer  ne tworks .  A p r o p e r l y  
des igned  bus s t r u c t u r e ,  capab le  o f  message r o u t i n g  and 
m u l t i p l e x i n g  h o s t - t o - h o s t  con~nunicatlon over  t h e  bus 
(or  t i m e - s h a r i n g  i t s  use  acco rd ing  to  some p r i o r i t y  
scheme) ,  shou ld  p r o v i d e  s u f f i c i e n t  hardware  c a p a b i l i -  
t i e s  f o r  implement ing  p r o p e r  packe t  s w i t c h i n g  t r a n s -  
m i s s ion  facilities. 

The approach i s  a l s o  a p p l i c a b l e  to  l a r g e r  i n s t a l -  
l a t i o n s  ( t o  r educe  t h e  overhead in  t h e  c e n t r a l  u n i t ) ,  
sys tems wi th  remote  job  e n t r y  f a c i l i t i e s  o r  computers 
connec ted  t o  a p r i v a t e  or  p u b l i c  d a t a  ne twork .  In 
t h i s  case  the  lower l e v e l  packe t  s w i t c h i n g  f a c i l i t i e s  
would o f  course  be p r o v i d e d  by the  network and the  
e n d - t o - e n d  p r o t o c o l  would be  b u i l t  on top  o f  them. 
Basing t h e  des ign  o f  communications between OS compo- 
n e n t s  on s t a n d a r d  network access  p r o t o c o l s  would en-  
su re  l a r g e r  c o m p a t i b i l i t y  and f l e x i b l e  expansion pos -  
s i b i l i t i e s  f o r  the  sys tem.  

U n f o r t u n a t e l y ,  d i f f e r e n t  manufac tu re r s  t e n d  t o  
hand le  f i l e s  and d a t a  t r a n s f e r s  t h e i r  own way. For 
i n c r e a s i n g  c o m p a t i b i l i t y  between d i f f e r e n t  sys tems a 
g e n e r a l  e n d - t o - e n d  p r o t o c o l ,  p r o v i d i n g  u s e r s  wi th  a 
set of file access and manipulation facilities, should 
be implemented on all host computers in a network to 
ensure efficient host-to-host communication at a level 
above packet-switching. Since there exists already a 
set of standards for the lower levels of communica- 
tions, it is highly desirable that a standard file 
access protocol he developed in sufficient detail for 
future implementation. 

6.  REFERENCES 

I. P. Brinch Hansen: Operating System Principles, 
Prentice'-Hal I, 1973. 

2. The COMTRE Corp., A.P. Sayers, Edit.: Operating 
Systems Survey, Auerbach, 1971. 

3. P. Brinch Hansen: The Programming Language Con- 
current PASCAL, IEEE Trans. on Software Engin. 
1,2, June 1975. 

4. R.S. Fabry: Dynamic Verification of Operating 
System Decisions, Com. ACM, vol. 16, no. ii, 
pp. 659-668, Nov. 1973. 

5. W.A. Wulf et al. : HYDRA - The Kernel of a Multi- 
processor Operating System, Comm. ACM, vol. 17, 
no. 6, pp. 337-345, June 1974. 

6. D.J. Parber, K.C. Larson: The Structure of a 
Distributed Computing System - Software, Prec. 
Symp. Computer - Comm., Networks and Teletraffic, 
pp. 539-545, Brooklyn, April 1972. 

7. E.G. Manning, R.W. Peebles: A Homogeneous Network 
for Data Sharing: Comunications, CCNG Rep. E-12, 
Univ. of Waterloo, May 1974. 

8. H. Aiso et al. : A Minicomputer Complex - KOCOS, 
Prec. 4th Data Comm. Syrup., ACM-IEEE, pp. 5-7 to 
12, Oct. 1975. 

9. Control Data 6000 Series Computer Systems RefeT- 
ence Manual, CDC Publ. No. 60100000. 

I0. Control Data Corp. NOS/BEI Reference Manual, CDC 
Publ. No. 60495800. 

Ii. D.K. Branstad: Encryption Protection in Computer 
Data Communications, Prec. 4th Data Co~nn. Symp., 
ACM-IEEE, pp. 8-1 to 7, Oct. 1975. 

12. C.S. Cart, S.D. Crocker, V.G. Cerf," Host-Host 
Communication Protocol in the ARPA Network, Prec. 
Spring Joint Comp. Conf., pp. 589-597, 1970. 

13. V. Cerf et al.: Proposal for an International 
End-to-End Protocol, INWG Gen. Note @ 96, IFIP 
W.G. 6.1, July 1975. 

14. H. Zimmermann: The CYCLADES End-to-End Protocol, 
Prec. 4th Data Conga. Symp., ACM-IEEE, pp. 7-21 to 
26, Oct. 1975. 

15. H. Zi~ermann: Proposal for a Virtual Terminal 
Protocol, Reseau CYCLADES, IRIA, Jan. 1976. 

16. P. Schicker, A, Duenki: Virtual Terminal Defini- 
tion and Protocol, Comp. Conm]. Review, ACM, 
vol. 6, no. 4, Oct. 1976. 

17. P. Schicker, A. Duenki, W. Baechi: Bulk Transfer 
Function (Proposal), INWG Protocol 31, European 
I n f o r m a t i c s  Network, EIN/ZHR/75/20, S e p t .  1975. 

4-25 


